
1. Introduction
Aerosols of various types (dust, sulfates, black carbon, etc.) affect surrounding atmospheric conditions by block-
ing solar radiation reaching the surface (Benedetti et al., 2019; Iacono et al., 2004; Kochanski et al., 2019; Lareau 
& Clements, 2015; Mlawer et al., 1997; Robock, 1988, 1991; Textor et al., 2006, 2007), acting as cloud conden-
sation nuclei (e.g., Fromm et al., 2006, 2010, 2016; Mann et al., 2014; Twomey, 1977), and reducing overall air 
quality (e.g., Pandolfi et al., 2014; Pope et al., 2002). Assimilation of aerosol properties into numerical weather 
prediction (NWP) models is important so that these effects to the atmospheric state can be accurately forecast. 
Most operational global models assimilate aerosol information retrieved from satellite data and climatological 
analyses (e.g., Benedetti et al., 2009). Several methods for assimilating aerosol properties exist and include vari-
ational (Chen et al., 2017; Liu et al., 2011; Saide et al., 2013, 2014) and ensemble techniques using either satel-
lite and/or surface-based observations (e.g., Peng et al., 2017; Rubin et al., 2016, 2017; Sekiyama et al., 2010; 
Tsikerdekis et al., 2020; Yumimoto et al., 2016). Choi et al. (2020) evaluated 3D-VAR, ensemble, and hybrid 
methods for assimilating dust aerosol optical depth (AOD) over the eastern Atlantic and western Africa. Their 
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System for Smoke (WoFS-Smoke) data assimilation and forecasting system are improved through the 
assimilation of aerosol characteristics derived from satellites. Satellite measurements of aerosols provide 
information on the amount and distribution of aerosols in the atmosphere. Assimilating these data into a system 
designed to track smoke aerosols produces a more accurate analysis of smoke concentration. This work uses 
aerosol observations from a geostationary orbiting satellite to take advantage of the high temporal frequency 
(<15 min) needed to continuously update smoke in WoFS-Smoke. Testing of two wildfire events showed 
that assimilating aerosol characteristics improved both smoke forecasts and forecasts of the surrounding 
atmospheric conditions.
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conclusions indicated that ensemble and hybrid assimilation techniques showed clear advantages over traditional 
variational methods when verified against aerosol observations. Sekiyama et al. (2010) used an ensemble Kalman 
filter (EnKF) approach to assimilate aerosol characteristics retrieved from the CALIPSO satellite to improve 
forecasts of dust aerosols over Japan. Most of these studies utilize data from polar orbiting satellites, which are 
adequate for global forecasting needs, but do not have the temporal resolution necessary for regional, convec-
tion allowing models (CAMs). Saide et al. (2014) and Yumimoto et al. (2016) tested the assimilation of aerosol 
properties derived from the Himawari-8 geostationary satellite and found some improvement in the aerosol and 
air quality forecasts compared to only assimilating data from polar orbiting satellites in Japan. As expected, the 
higher temporal resolution and spatial coverage afforded by geostationary based sensors can provide significant 
advantages to NWP systems.

Assimilation of aerosol properties into CAMSs has not been prioritized until recently. Back et al. (2020) tested 
the assimilation of Visible Infrared Imaging Radiometer Suite (VIIRS) AOD retrievals to improve forecasts of 
smoke generated by wildfires into the High-Resolution Rapid Refresh for Smoke (HRRR-Smoke). HRRR-Smoke 
is a CAM with a 3 km grid spacing and is cycled hourly over a Continental United States (CONUS) domain 
(Ahmadov et al., 2017; Dowell et al., 2022; James et al., 2022). However, AOD assimilation into a limited area 
domain, rapidly cycled (sub hourly) forecast system designed for an operational framework has yet to be fully 
explored. One such system is the Warn-on-Forecast System (WoFS) initially designed to generate short-term 
(0–6  hr) forecasts of high impact weather events such as storm rotation, large hail, severe winds, and flash 
flooding (Jones et al., 2016; Skinner et al., 2018; Stensrud et al., 2009, 2013; Wheatley et al., 2015; Yussouf & 
Knopfmeier, 2019). Recently, Jones et al. (2022) extended the WoFS to ingest fire radiative power (FRP) retriev-
als of wildfires to initiate smoke plumes within the system using the smoke plume injection algorithm created 
for HRRR-Smoke. Results from this work showed that WoFS-Smoke generated reasonably accurate probabilistic 
forecasts of smoke plumes associated with several large wildfires occurring in the western CONUS during the 
summer of 2020 when compared against surface, satellite, and radar observations. However, certain limitations 
were also noted which included errors in the concentration and spatial extent of the smoke plumes in the forecasts.

In an effort to address these limitations, we develop an AOD assimilation capability for WoFS-Smoke. WoFS uses 
an EnKF assimilation technique and cycles at 15 min intervals, so this system combines the favorable attributes of 
ensemble data assimilation with high frequency remote sensing data. AOD and aerosol type (dust or smoke) prod-
ucts are retrieved in realtime using infrared and visible channel data from GOES-R. This work focuses on extend-
ing WoFS-Smoke with the necessary forward operator and state variables needed to fully assimilate AOD along 
with the radar (reflectivity and radial velocity) and satellite (water vapor radiances and cloud water path (CWP)) 
data used in the existing system. To assess the impact of assimilating AOD from smoke, sensitivity analysis are 
performed for two wildfire cases (one in Oklahoma and one in Arizona) comparing no-AOD to AOD assimilation 
experiments. Cases were selected based on a desire for testing isolated smoke plumes, the availability of initial 
conditions, quality of AOD retrievals, and for one case the presence of high density surface observations. Quali-
tative and quantitative verification is performed using observed AOD, visible imagery, and surface measurements 
of incoming solar radiation. The goal is to provide evidence that assimilating AOD into WoFS-Smoke increases 
skill in smoke forecasts as well as its thermodynamic impact on the surrounding environment.

Following the Section 1, the WoFS-Smoke configuration, the AOD retrievals and development of the forward 
operator are discussed in Section 2. Section 3 provides case summaries for each fire. Section 4 describes the 
covariance characteristics between analyzed AOD and other model variables as well as bias and error characteris-
tics for assimilated AOD. Section 5 discusses qualitative and quantitative comparisons of each AOD assimilation 
experiment, with conclusions following in Section 6.

2. WoFS-Smoke Description
2.1. System Configuration

The baseline configuration of the WoFS is described in detail by Wheatley et al. (2015), Jones et al. (2016, 2020), 
and Skinner et  al.  (2018). A regional domain is selected daily and encompasses the area of expected high 
impact weather. The WoFS is initialized in the mid-morning from the HRRR 36 member ensemble and cycled 
at 15 min intervals thereafter assimilating all available conventional (temperature, humidity, wind, pressure), 
radar (WSR-88D reflectivity and Doppler radial velocity), and geostationary satellite observations (CWP, clear 
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sky radiances). Boundary conditions are provided by a 9 member HRRR-ensemble forecast initiated daily at 
1200 UTC. WoFS forecasts are generated from the updated analyses at hourly or sub-hourly intervals. In the 
WoFS-Smoke configuration used here, smoke aerosol concentrations are initialized from the HRRR-Smoke 
analysis corresponding to the system initialization time and smoke boundary conditions are set to zero (Jones 
et al., 2022). As of 2022, WoFS-Smoke has a horizontal grid spacing of 3 km with a domain 900 × 900 km in size 
and 51 vertical levels extending from the surface up to a model top of ∼20 hPa.

Data are assimilated for the duration of each case using the EnKF technique and utilizing the forward opera-
tors included within the Community Gridpoint Statistical Interpolation (GSI) software (Hu et al., 2016; Kleist 
et  al., 2009; Whitaker et  al., 2008). The WoFS uses the Advanced Weather Research and Forecasting model 
(WRF-ARW) version 3.9.1, similar to the version used by the HRRRv4 (Powers et  al.,  2017; Skamarock 
et al., 2008). Jones et al. (2022) extended WoFS into the WoFS-Smoke configuration by adding the smoke plume 
injection algorithm from HRRR-Smoke into the system (Freitas et al., 2006, 2007). The Freitas et al. (2006, 2007) 
estimates plume rise using a 1-D entrainment parameterization scheme that incorporates model data (tempera-
ture, moisture, horizontal and vertical velocity, cloud hydrometeor variables, and land surface conditions) at 
each model grid point. Vertical velocity within this column is estimated using these data combined with the FRP 
observation at that location. Smoke injection height is then calculated and transferred back to the NWP model 
(e.g., WRF), which uses this information to release aerosols into the model analysis. For wildfires encompassing 
multiple grid points that have large variations in size and intensity, multiple injection heights may be associated 
with an individual fire resulting in a complex vertical distribution of aerosols at the analysis time.

To enable assimilation of AOD retrievals, the smoke aerosol tracer is added to the set of prognostic state variables 
updated during each assimilation cycle (Choi et al., 2020). The EnKF updates a predefined set of prognostic vari-
ables during the assimilation process nominally consisting of parameters such as temperature, humidity, pressure, 
wind, and hydrometeors. The addition of a smoke variable allows smoke concentrations to be directly updated 
through assimilation of AOD retrievals. When AOD is not being assimilated, the smoke state variable is retained 
to maintain a consistent WoFS-Smoke configuration. Without AOD assimilation, adding smoke to the updated 
state has little impact since no other assimilated observations are highly correlated with smoke concentrations. 
Smoke plumes from wildfires are initiated and updated using the Freitas method described above. WoFS-Smoke 
currently ingests FRP retrievals from the Suomi-NPP, NOAA-20, Terra, and Aqua satellites at hourly intervals 
(Ahmadov et al., 2017; Jones et al., 2022). A full description of this processes is provided in Jones et al. (2022).

2.2. AOD Assimilation

Aerosols lofted into the atmosphere are detectable from satellite sensors such as the Moderate Resolution Imaging 
Spectroradiometer, VIIRS, and Advanced Baseline Imager (ABI), using visible and infrared bands (e.g., Coakley 
et al., 1983; Kaufman et al., 1997; Remer et al., 2005). AOD represents the extinction of solar radiation as it 
passes through the atmosphere due to aerosol particles such as sulfates, dust, black carbon, and sea-salt. Retrieval 
algorithms function by matching the observed reflectance values to expected values based on lookup tables 
generated from radiative transfer models (RTMs) for various aerosol types. Then, AOD is retrieved where the best 
fit match is made. An AOD near to zero indicates a pristine, aerosol-free environment with values greater  than 
1.0 indicating very heavy aerosol concentrations. Since AOD is a total-column product, no information on the 
vertical distribution of aerosols is present. Retrievals are made primarily using visible channels, so aerosol data 
are generally not available during nighttime hours using these methods. Larger uncertainties in AOD occur over 
bright surfaces such as deserts (e.g., Levy et  al., 2007) or in the vicinity of clouds (e.g., Koren et  al., 2007; 
Zhang et al., 2005). The latter limitation is critical since smoke from intense wildfires is often co-located with 
pyro-cumulus (pyroCu). This work uses the level 2 (L2) AOD product, CONUS domain (AODC) generated in 
realtime from GOES-R data. The GOES-R AOD retrieval algorithm was developed to use the visible and infrared 
reflectances observed by the ABI to retrieve AOD at 0.55 μm and aerosol type for full-disk and CONUS domains. 
Retrievals are made at an effective resolution of 2 km at 5 min intervals in the CONUS domain product. Cloudy 
pixels are filtered out prior to applying the AOD retrieval algorithm to remove potential cloud contamination in 
the product. Valid AOD retrievals for both cases range from 0 to 2.5.

To assimilate AOD into the system, it is important to develop a robust forward operator that simulates model 
AOD values from an analyzed atmospheric state. Many recent AOD assimilation efforts have utilized a RTM to 
relate the analyzed atmospheric state (including aerosol concentrations and clouds) to retrieved properties such 
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as AOD (e.g., Choi et al., 2020; Liu et al., 2011). While this method has proven successful for many applications, 
the assumptions used for aerosol type and surrounding cloud properties may not be completely suitable as a 
forward operator for our application. Initial testing of this method generated undesirable biases and errors, which 
significantly limited the potential for successfully assimilating AOD in WoFS-Smoke. For example, a very high 
positive bias in synthetic AOD was generated using this method while also having a substantial variability from 
cycle to cycle. Potential reasons include the model aerosol type not fully matching the assumptions present in the 
RTM and small variations in smoke concentrations having an outsized impact using this method. Attempting to 
address these and other uncertainties lies outside the scope of this work and left for future research.

Instead of using the Community Radiative Transfer Model included in the GSI software as the forward operator, 
this work uses a mathematical relationship between 3-D smoke aerosol concentrations and AOD at 0.55 μm 
established by Randles et al. (2017). First, an extinction coefficient (ext) is defined by summing two constants 
sc_me = 4 and ab_me = 0.5 corresponding to the scattering and absorption efficiency for smoke respectively. 
At each grid point and model level, a moisture adjustment is then applied to this coefficient (aext) when relative 
humidity (RH) > 30% to account for hydroscopic aerosol growth (Equation 1). Synthetic AOD between 2 model 
levels (AOD[z]) is then calculated by multiplying the smoke aerosol mixing ratio (PM2.5), RH, the height between 
model levels (dZ), and the adjusted extinction coefficient (aext) as shown in Equation 2.

aext = ext ×

(

1 − 0.3

1 − RH[𝑧𝑧]

)0.18

 (1)

AOD[𝑧𝑧] = 10
−6

× aext × PM2.5[𝑧𝑧] × RH[𝑧𝑧] × (𝑑𝑑𝑑𝑑) (2)

Finally, total column AOD for a model grid point is calculated by integrating AOD[z] over all model levels 
(Equation 3).

AOD =

model−top
∑

𝑧𝑧=0

AOD[𝑧𝑧] (3)

Randles et al. (2017) applied this formula for in successful AOD assimilation experiments using the Goddard 
Aerosol Assimilation System.

Synthetic AOD values greater than 2.5 are set to 2.5 to correspond with the maximum possible retrieval value, 
accounting for ∼10% of the data. A similar adjustment is applied to CWP in the baseline WoFS system since 
the retrievals CWP retrievals saturate in thick clouds and precipitation (Jones et  al.,  2016). Tracers for other 
aerosol types are not included in this version of WoFS-Smoke and do not contribute to the synthetic AOD values 
produced.

GOES-R AOD retrievals must also be processed from their raw state prior to assimilation. As with other satellite 
observations such as CWP and radiances (Jones et al., 2016, 2020), AOD data are thinned to a 5 km resolution. 
Non-smoke AOD retrievals classified by the L2 Aerosol Detection Product, CONUS domain (ADPC) are also 
filtered out at this time. Since AOD is a very non-linear variable, applying a single observation error for all obser-
vations would not be optimal (Choi et al., 2020; Schwartz et al., 2014). Thus, we apply the same approach used 
for CWP and vary the observation error as a function of the retrieved AOD value from 0.025 up to 0.85. Using 
this approach allows for low AOD values to have a meaningful impact during the assimilation process while not 
overfitting the model where high AOD values are present. As with other satellite and radar variables, horizontal 
and vertical localization values that use the Gaspari and Cohn (1999) technique are also applied. Testing showed 
that a horizontal localization radius of 36 km, the same as currently used for CWP and radiance observations, 
performed well. Overall sensitivity of the horizontal localization radius to the impact of AOD assimilation was 
low between the ranges of 20–50 km. Assigning a vertical localization is more complicated. Since AOD is a 
vertically integrated value, applying a specific vertical level and localization radius is not practical. We chose to 
assume an infinite vertical localization similar to that used for radiance observations in the system. Since AOD 
observations, much like radiances, have no assigned vertical level, we must allow the opportunity for AOD 
observations to impact all model levels, not just a few levels near the surface or high in the atmosphere. When 
considering the complex vertical profile of smoke aerosol concentrations, it is vital that the assimilation methods 
used here can adjust these profiles in a realistic manner.
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Another concern are biases in the AOD observations and synthetic AOD calculation. As with other observation 
types, large biases in one or the other can lead to non-optimal assimilation of these data. Applying a bias correc-
tion is not trivial and requires extensive knowledge of the bias characteristics of AOD from thick smoke. AOD 
retrievals and synthetic model analysis were compared to determine if a consistent bias was detectable. Results 
indicated large differences in bias characteristics from various cases for AOD  >  0.25 (not shown); thus, we 
decided not to apply a bias correction for the following experiments. A larger sample of cases will be used in the 
future to further assess potential bias corrections in follow-up work.

For the 2018 case, the system is initialized at 1800 UTC and cycled at 15 min intervals until 0100 UTC. The 2020 
case is similar, but initialized at 1500 UTC while also ending at 0100 UTC. All experiments assimilate conven-
tional, radar reflectivity and radial velocity observations as in Jones et al. (2022). For this work, no radiance or 
CWP data are assimilated. The current clear-sky radiance and CWP observations used in WoFS do not include 
areas of significant aerosol coverage. In both cases, they are masked out during the observation pre-processing 
phase. Assimilating either would provide no additional aerosol information to the system. Ensemble forecasts are 
generated at selected analysis times starting at 2000 UTC. Two sets of experiments are conducted. The control 
experiment (CNTL) contains smoke initiated from FRP retrievals, but does not assimilate AOD. The second 
experiment with AOD (WAOD) follows the CNTL configuration, but also assimilates GOES-16 AOD retrievals 
at 15 min intervals. The primary goal of comparing these experiments is to determine under what circumstances 
assimilating AOD can improve both smoke forecasts and forecasts of the surrounding environment.

3. Wildfire Case Overviews
3.1. 13 April 2018

On 13 April 2018, a sharp dryline moved eastward through Oklahoma with severe thunderstorms generated ahead 
and very dry, windy conditions being present behind. The strong westerly winds coupled with the extremely dry 
airmass resulted in an environment favorable for wildfires. Several large grassfires initiated in northwestern OK 
during the early afternoon and continued into the evening (Figure 1a). FRP retrievals from GOES-16 and polar 
orbiting satellites within this domain show the spatial extent of these fires. The largest complex occurs in the 
central portion of the domain with a secondary fire further to the southwest. GOES-16 FRP retrievals also reveal 
many small, short-lived fires. Total GOES-16 FRP begins to increase at 1730 UTC peaking at around 2000 
UTC before rapidly decreasing to near zero by 0000 UTC. Retrievals from polar-orbiting sensors only provide 
data between 1730 and 2000 UTC; thus, they do not sample the temporal evolution of these fires. At 2100 UTC, 
visible (0.47 μm) GOES-16 imagery shows smoke plumes emanating from the ongoing wildfires being advected 
in a northeasterly direction by the environmental flow (Figure 2a). Smoke from both large fires combined to 
form one large smoke plume by 2100 UTC. The coverage of smoke increases over the next 90 min (Figures 2b 
and 2c). Corresponding AOD retrievals also show the extent of the smoke with large areas of AOD > 0.5 during 
this period (Figures 2d–2f). However, note that AOD retrievals were not made in the areas of greatest aerosol 
concentrations owing to being miss-classified as clouds.

3.2. 16 June 2020

On 16 June 2020, a large wildfire was ongoing in central AZ that is known as the Bush fire. Dry conditions had 
been present in much of the AZ during the previous weeks, resulting in large areas of dry brush suitable to sustain 
large fires. Satellite FRP retrievals show the crescent shaped fire line with the GOES-16 FRP time-series indi-
cating the maximum intensity of the fire is occurring between 2000 and 0000 UTC (Figure 1b). By 2200 UTC 
a large smoke plume extends northeastward from the fire which eventually reaches in to western New Mexico 
by 0100 UTC 17 June 2020 (Figures 3a–3c). A second fire, known as the Mangum fire, was also ongoing in the 
northwestern portion of the domain generating large amounts of smoke in southern Colorado. AOD retrievals are 
made for large portions of both smoke plumes, though few AOD retrievals are associated with the Mangum fire 
until after 2300 UTC (Figures 3d–3f). One consistent issue with the AOD retrievals in both AZ fires are missing 
retrievals in the thickest portions of the smoke plume. We chose to use GOES-16 rather than GOES-17 AOD 
retrievals for this work since the latter had difficulty in generating valid retrievals in northeastern AZ.
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4. Observation Diagnostics
4.1. Covariance Analysis

Before analyzing the case-study results, it is important to analyze the expected impact of assimilating AOD on the 
model state. To assess how assimilating AOD relates to individual atmospheric variables, the covariance between 
synthetic AOD and selected variables including PM2.5 (smoke), temperature (T), humidity (Qv), and meridional 
wind (V) are calculated. The covariance at each model grid point is calculated by comparing the AOD analysis 
from each ensemble member to the value of the atmospheric variable at that grid-point for each member, resulting 
in a 2 × 36 array at each point. Since AOD is a 2-D parameter, the same value is used in computing the covariance 
between it and the atmospheric variable for all model levels at a given location. Cross-sections of the resulting 
3-D covariances fields are created along the forecast smoke plumes for both cases. These plots indicate how 2-D 
AOD retrievals will contribute to changes in the 3-D distribution of smoke in the model, which are the greatest 
where the covariances values are highest.

On 13 April 2018 at 2100 UTC, model derived AOD is strongly correlated with 3-D smoke along the line of 
maximum smoke concentration. Figure 4a shows the AOD-smoke covariance at ∼2 km above the surface. A 
vertical cross section of the covariance field across this line shows positive covariance values between AOD both 
near the surface and over 4 km above the surface (Figure 4b). Given that AOD is calculated directly from smoke, 
such high covariances values would be expected. More interesting are indirect relationships between AOD and 
non-smoke variables. For temperature, the overall covariance values are much lower, but some relationship 
between these fields is evident (Figure 4c). Note that the sign of perturbation potential temperature was reversed 
for these plots so that positive covariances values would correspond to atmospheric cooling. Larger AOD values 
are associated with cooling at multiple atmospheric levels, which would be expected (Figure 4d). A somewhat 
unexpected result was a positive relationship found between AOD and atmospheric water vapor (Figures  4e 
and 4f). For this case, AOD and water vapor are positively correlated in the area of the largest fire, with positive 

Figure 1. The left column shows hotspot retrievals between 1500–0100 UTC from the Terra, Aqua, Suomi-NPP, NOAA-
20 and GOES-16 satellites for the 13 April 2018 (a) and 16 June 2020 (b) cases. GOES-16 retrievals are plotted at their 
native resolution of 2 km, with data from the other sensors having a finer resolution. The right column shows the sum of fire 
radiative power for all retrievals within a 5 min window from each satellite in this domain over the same time period.
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correlation extending to 4 km above the surface (Figure 4f). Thus, assimilating AOD even where little smoke 
exists in the model analysis may act to increase atmospheric moisture. Finally, the covariance between meridional 
wind and AOD was examined. Positive values are generally present on the northwest side of the analyzed smoke 
plume and low to negative values to the southeast (Figure 4g). The vertical cross section shows the impact varies 
significantly with height with both a low-level and upper-level maxima (Figure 4h). The exact mechanism for the 
upper-level (10–12 km) positive covariance values remains unclear. Covariances characteristics associated with 
zonal wind are similar (not shown). The covariance patterns associated with the 16 June case are consistent with 
the 13 April case, but with the covariance between AOD and the other atmospheric variables is generally larger 
(Figure 5). This is due to the much higher analyzed smoke concentrations compared to the 13 April case and the 
smoke emanating from a single, large fire in the plotted domain. Covariance calculations were done for several 
other cases, and all generated similar patterns (not shown). Having the covariance characteristics of these cases 
being very similar provides confidence that the impact of assimilating AOD will be consistent from case to case. 
These statistical analyses are vital to understanding how assimilating AOD impacts the overall forecast system 
and under what conditions assimilating AOD data is likely to have its greatest effect.

4.2. Assimilated AOD Retrievals

The number of AOD observations assimilated is driven by several factors including the coverage of existing 
smoke plumes, the surrounding environmental aerosol loading, and the quality of the AOD retrievals in chang-
ing conditions. For the 13 April 2018 case, the cycling starts at 1800 UTC at which time the smoke plumes are 
relatively small resulting in few AOD retrievals (Figure 6a). This number increase rapidly, peaking above 2500 
between 2200 and 2300 UTC corresponding to the rapid expansion of the smoke plumes. After 2300 UTC, the 
number of retrievals begin to decrease as darkness begins to fall across the domain and the fires weaken. On 16 
June 2020, the number of AOD retrievals assimilated at the first cycle of 1500 UTC is in excess of 4000 and 

Figure 2. GOES-16 visible (0.47 μm) imagery at 2100, 2145, and 2230 UTC on 13 April 2018 (a–c). Corresponding fire 
radiative power retrievals from GOES-16 at these times are also provided with colors representing their retrieved temperature 
and their size as a representation of their coverage. The size of the dots does not directly represent the actual fire size, but is 
plotted to show the locations of smaller versus larger detections. The bottom row of plots shows GOES-16 aerosol optical 
depth retrievals at these times (d–f). Note that few retrievals exist near the areas of highest smoke concentrations due to these 
areas being classified as “clouds”.
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gradually decrease until 2000 UTC (Figure 6c). These AOD retrievals generally represent existing aerosols in 
the atmosphere not associated with the ongoing fires. After 2000 UTC, the smoke coverage grows increasing the 
number of AOD retrievals assimilated during the remainder of the cycling period.

The bias, root mean square error (RMSE), and total spread (SPRD) are calculated at each cycle to assess the 
adjustment resulting from AOD assimilation. On 13 April, both bias and SPRD are quite large (>0.4) between 
1800–2100 UTC (Figure 6b). Bias is defined as the observation minus the analysis (o-a) with positive values 
indicating the model is underestimating AOD. Despite FRP retrievals being ingested at 1730 and 1830 UTC, time 
is still required to transport smoke from these fires downstream from the source into the surrounding environ-
ment. Bias and RMSE decrease until 2300 UTC as the impact of assimilating the AOD retrievals builds up over 
time. RMSE and SPRD also begin to converge indicating that the retrievals are being assimilated more optimally 
during this period. On 16 June 2020, extensive aerosol coverage exists both in the observations and model initial 
conditions at 1500 UTC with the model having a low bias in aerosol concentration (Figure 6d). However, the 
overall aerosol concentrations are low, resulting in relatively small impacts from assimilation until 2000 UTC. 
These impacts increase afterward as AOD retrievals associated with the smoke plumes become more evident 
leading to a larger number of high AOD values (>0.5) being assimilated. By 2300 UTC, the RMSE and SPRD 
values are similar indicating that the assimilation has a reached a more optimal state.

Maintaining ensemble spread when assimilating AOD is a challenge also noted by Rubin et al. (2016), Schwartz 
et al. (2014) and Choi et al. (2020). The initial WoFS-Smoke system described by Jones et al. (2022) did a reason-
able job with spread in the intensity of smoke aerosols, but not their location. The main challenge is that fires 
are considered stationary sources of smoke with little short-term trend information being included. If smoke is 
injected into an atmospheric layer where little member to member variation exists, there is limited opportunity 
for the extent of the smoke transport to differ between these members. Ongoing work aims to further improve 
the potential for aerosol spread in the system, which should allow for more optimal AOD assimilation in future 
versions of WoFS-Smoke. Still, this work represents an important first step in assimilating AOD into ensem-
ble based high resolution forecast system. Further optimization of the system is expected as ongoing research 
explores more cases and adjustments to the AOD data assimilation techniques.

Figure 3. Same as Figure 2, but for 16–17 June 2020 at 2200, 2330, and 0100 UTC.
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Figure 4. Ensemble covariance plots between analyzed 2-D aerosol optical depth (AOD) and smoke (a), perturbation potential temperature (c), water vapor mixing 
ratio (e), and the meridional component of wind (g) at 800 hPa at 2100 UTC 13 April. The cross-section of ensemble covariance is provided for each variable (b, d, 
f, h) along a southwest to northeast path correspond to the location of the main smoke plumes. Covariance values are multiplied by a factor of −10, 10, and 10 for 
temperature, humidity, and zonal wind to accentuate the differences. The black line on the cross-section plots represents the ensemble mean AOD along this path.
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Figure 5. Same as Figure 4, but for the 16 June 2020 case at 2200 UTC.
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5. Case Study Results
5.1. 13 April 2018

WoFS-Smoke has the ability to generate probabilistic forecasts of smoke, which are shown here as the probability 
of total column smoke greater than 50 mg m −2. Smoke forecasts initiated at 2100 UTC are provided in Figure 7 
at 45 and 90 min forecast times for both CNTL and WAOD experiments. The forecast differences after 90 min 
are generally small for this case and all forecast initialization times between 1900–2200 UTC (not shown). Both 
experiments forecast high probabilities of thick smoke over much of northwestern OK. Smoke plumes from indi-
vidual fires combine into a single larger plume that extends northeast into Kansas. The coverage of the forecast 
smoke plume in both experiments increases as a function of forecast time as does the amount of smoke observed. 
However, significant differences between the smoke forecasts and observations exist. Both experiments fail to 
forecast the eastward extent of the smoke into central OK and do not clear out the smoke in western OK rapidly 
enough. Assimilating AOD does produce small, but consistent improvements to the forecast. Smoke probabilities 
forecast by WAOD are somewhat reduced on the western side of the plume at the analysis time and out to 90 min. 
Similarly, the eastward extent of the smoke plume is greater in WAOD.

Both trends are apparent when comparing forecast ensemble mean AOD at 2145 UTC (Figure  8). For this 
time, cross-sections of smoke concentration are calculated along with the corresponding forecast AOD at two 
different locations. The first (1) represents a west-to-east slice across the primary smoke plume in northern OK 
(Figures 8c and 8d). The second (2) represents a southwest-to-northeast slice across the leading edge of the smoke 
plume (Figures 8e and 8f). Also shown are the GOES-16 AOD retrievals along the same path at this time. For 
cross-section “1,” both experiments over-forecast the western extent of the smoke and place the highest smoke 
concentrations in the same location. CNTL under-forecasts smoke further east, while observed AOD remains 
greater than 0.5 (Figure 8c). WAOD differs in that the smoke is forecast to extend further east with forecast and 
GOES-16 AOD in much better agreement (Figure 8d). In the region of maximum smoke concentrations, forecast 
AOD is much higher than observed, but this is due to limitations in the AOD retrieval algorithm for extreme 

Figure 6. Number of GOES-16 aerosol optical depth retrievals assimilated at each 15 update cycle for the 13 April 2018 (a) and 16 June 2020 (c) cases. Bias 
(observation—analysis), root mean square error, and total spread (SPRD) at each cycle for each case are provided in panels (b, d).
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aerosol concentrations. Cross-section “2” also indicates that WAOD extends the forecast of smoke further east 
compared to CNTL (Figures 8e and 8f).

To assess how these differences affect the environment, forecast ensemble mean downward shortwave flux 
(SWDOWN) at 2145 UTC from both experiments are compared (Figures  9a–9c). Several differences in the 
SWDOWN forecasts are present and correspond to the eastward shift of the smoke plume apparent in the prob-
abilistic forecast. The difference (WAOD—CNTL) between SWDOWN at 2145 UTC highlights the impact of 
assimilating AOD (Figure 9a). Overall, more solar radiation is reaching the surface on the west side of the plume 
in the WAOD experiment compared to the CNTL experiment. A corresponding decrease also exists on the east 
side. Recall that assimilating AOD should also have impacts on the surrounding environment. To assess these 
impacts, differences in 2-m temperature, 2-m water vapor mixing ratio, and 10-m meridional wind are also calcu-
lated (Figures 9b–9d). In the region between stations WATO and FAIR, the reduction in SWDOWN corresponds 
to cooling (1°C) and moistening (2 g kg −1) at the surface. Further downstream, the opposite signal is present. 
Differences in 10 m meridional wind are also apparent, but the overall pattern is less clear. Similar results are 
present for zonal wind (not shown). One question that arises from this result is whether or not the improvement in 
AOD forecasts is primary due to the direct assimilation of AOD improving the smoke initial conditions or indirect 
impacts on the environment, specifically wind. A higher eastward wind speeds would act to transport smoke from 
west to east more rapidly. However, when comparing wind speed between the experiments in the 0–3 km layer, 
they were found to be generally small (<2 ms −1). Thus, it appears the improvement in smoke forecasts is largely 
due to the AOD assimilation correcting biases in the smoke injection due to the poor temporal frequency of the 
FRP data.

The dense network of surface observation sites provided by the Oklahoma Mesonet creates a rare opportunity 
to verify the impact on solar radiation from forecast smoke against actual observations. This mesonet is a dense 
network of surface observation sites that measure temperature, humidity, pressure, wind, and radiation every 
5 min within the state of Oklahoma. Figure 10 shows ensemble mean bias (Model—Observation) of SWDOWN 
at six mesonet sites within the smoke plume for 0–90 min forecasts initiated at 2100 UTC. For sites located near 

Figure 7. The probability of vertically integrated 2.5 μm diameter particulate matter (PM2.5) > 50 mg m −2 contours at 
10% (blue), 50% (green) and 90% (red) overlaid on GOES-16 visible imagery valid 2100, 2145, and 2230 UTC 13 April for 
the CNTL (a–c) and WAOD (d–f) experiments. Also overlaid in pink is the area where the standard deviation of vertically 
integrated smoke over each ensemble member for the same forecast times is >200 mg m −2. Black dots indicate the locations 
of model analyzed hotspots at 2100 UTC. Yellow and purple ovals indicate where CNTL under and over-forecasts smoke 
compared to satellite imagery at 2100 UTC.
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the western edge of the smoke plume (FREE, WOOD), CNTL under-forecasts SWDOWN (i.e., over-forecasts 
smoke) compared to observations between the 15 and 90 min forecast period. Conversely, WAOD generates 
much lower SWDOWN forecast biases over the same period. This is consistent with the main smoke plume being 
shifted eastward from assimilating AOD. Forecasts differences between CNTL and WAOD are also apparent 
in at two sites located within thicker portions of the smoke plume (ALV2, FAIR). For ALV2, there is a small 
decrease in the 0–60 min forecast bias. However, SWDOWN forecasts at FAIR are not improved in WAOD. 
After the first 30 min, WAOD over-forecasts SWDOWN (under forecasts smoke) compared to CNTL. It should 
also be noted that both experiments substantially over-forecast SWDOWN at this site. SWDOWN bias charac-
teristics from sites such as SEIL and PUTN that lie under the heaviest smoke did not differ significantly between 
experiments (not shown). Given the lower number of AOD retrievals assimilated in these regions, differences 
were expected to be small. Finally, forecasts at two sites along the eastern side of the smoke plume are compared 
(LAHO and WATO). At both sites, WAOD generates lower biases due to forecasting more smoke than CNTL, 
which is consistent with greater eastward extent of the smoke plume in observations compared to the overall 

Figure 8. Ensemble mean aerosol optical depth (AOD) at 2145 UTC from a forecast initiated at 2100 UTC 13 April 2018 for 
CNTL (a) and WAOD (b) experiments. For two cross-sections along the smoke plume, the vertical profile of smoke aerosol 
concentration (contours), forecast AOD (red line), and observed GOES-16 AOD (black dots) are provided.
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model forecasts. Verification against other surface observations such as temperature, humidity, and wind speed 
showed little difference between the experiments. In particular, the difference in wind speed biase between each 
experiment rarely exceeded 1 ms −1. Results are similar for forecasts initiated at 2000 and 2200 UTC (not shown).

Figure 9. Differences (WAOD-CNTL) between ensemble mean downward shortwave flux (a), 2-m temperature (b), 2-m water vapor mixing ratio (c), and 10-m 
meridional wind speed (d) 45 min forecasts initiated at 2100 UTC and valid at 2145 UTC 13 April 2018 The locations and names of OK Mesonet stations are overlaid 
on panel (a).
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5.2. 16 June 2020

As with the 13 April 2018 case, probabilistic forecasts of smoke greater than 50 mg m −2 are created, but for a 
3 hr forecast initiated at 2200 UTC on 16 June 2020. This case was also discussed in Jones et al. (2022) as part 
of the initial WoFS-Smoke development. Both CNTL and WAOD experiments generated high probability smoke 
forecasts emanating from the two major fires in AZ for the entire 3 hr forecast period (Figure 11). Assimilating 
GOES-16 AOD retrievals results in forecast smoke probability contours better matching the outline of the smoke 
plume observed in visible data at 2200 UTC (Figures 11a and 11d). These differences remain at later forecast 
times, but are confined to the downstream portion of the smoke plume. In addition to plume shape, the amount 

Figure 10. Bias (Model—Observations) of ensemble mean downward shortwave flux (SWDOWN) forecasts initiated at 2100 UTC 13 April for CNTL (red) 
and WAOD (blue) experiments at six OK Mesonet sites (see Figure 9 for site locations). Positive values indicate WoFS-Smoke is over-forecasting SWDOWN 
(under-forecasting smoke) and negative values indicate WoFS-Smoke is under-forecasting SWDOWN (over-forecasting smoke). Note that the y-axis scales differ from 
site to site. Average bias between 5 and 90 min forecast time for both experiments are provided for each site.
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of smoke forecast is also noticeability different between the two experiments. In the downstream portion of the 
plume, WAOD forecasts lower smoke concentrations compared to the CNTL. Both experiments over-forecast 
the southeastward extent of the main smoke plume and assimilating AOD only marginally improves this portion 
of the forecast. Corresponding forecast AOD is also much lower in the WAOD experiment at 2330 UTC in the 
downstream portion of the smoke plume (Figures 12a and 12b). Smoke forecasts associated with the Mangum 
fire are similar from a probabilistic perspective for both experiments.

Cross-sections were computed across the Bush fire smoke plume at two different locations, this time for 90 min 
forecasts valid at 2330 UTC 16 June 2020 (Figure 12). The first cross-section (1), is a northwest-to-southwest slice 
across the plume where forecast AOD exceeds 5.0 in CNTL (Figure 12c). Both smoke and AOD forecasts show 
the relatively narrow, but high concentration smoke plume at this time. The eastward bias in the forecast smoke 
plume is also evident when compared against GOES-16 retrievals. WAOD differs in several aspects (Figure 12d). 
First, forecast smoke concentrations are much lower, but also extend somewhat further west. Forecast AOD and 
GOES-16 AOD retrievals are in much better agreement, but recall that AOD retrievals in the heart of the smoke 
plume may be underestimates. A second cross section (2) further northeast show much lower forecast smoke 
concentrations in both experiments (Figures 12e and 12f). At this location, CNTL over-forecasts AOD while 
WAOD under-forecasts AOD. These differences are consistent with the differences upstream in cross section “1”.

The difference in ensemble mean downward shortwave flux at 2330 UTC from both experiments shows the 
location of both primary smoke plumes (Figure 13a). A decrease over 500 Wm −2 in solar radiation reaching the 
surface exists between the environment and the thickest portion of the smoke plumes. The forecasted decrease 
with the Bush fire is less in WAOD, corresponding to the lower smoke concentrations forecast downstream 
(Figure 13a). However, near the origin WAOD actually increases smoke aerosol concentrations, leading to less 
solar radiation reaching the surface. Overall, the forecast smoke plume associated with the Bush fire is shifted 
slightly east and is weaker at most locations downstream of the origin. Other differences between CNTL and 
WAOD forecasts are present with the Mangum fire smoke plume. The magnitude of the differences is smaller, but 
WAOD forecasts lower smoke concentrations southeast of the main smoke plume leading to more solar radiation 
reaching the surface. Conversely, WAOD forecasts higher smoker concentrations (less solar radiation reaching 
the surface) along the path where both experiments have the most intense portion of the plume. Additional 
differences occur when comparing forecasts of the surrounding environment. The decrease in forecast smoke by 
WAOD results in an increase in 2-m temperature of 1–2°C over a large area (Figure 13b). However, 2-m water 

Figure 11. Same as Figure 7, but for 0, 90, and 180 min forecasts initiated at 2200 UTC 16 June 2020.
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vapor mixing ratio also decreases, with WAOD forecasting slightly drier conditions (Figure 13c). This result 
differs from the 13 April case and the covariance analysis conducted for both cases where moistening is expected. 
However, the maximum moistening signal is 2–4 km above the surface and the 2-m difference plotted here does 
not capture the increasing moisture at higher levels. Plots at higher levels do show that WAOD forecasts greater 
moisture content at these levels as expected (not shown). Finally, differences in forecast 10-m meridional wind 
speed are generally confined to the edges of the smoke plume (Figure 13d). Unfortunately, these smoke plumes 

Figure 12. Same as Figure 8, but at 2330 UTC from a forecast initiated at 2200 UTC 16 June 2020.
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Figure 13. Same as Figure 9, but for a 90 min forecast initiated at 2200 UTC 16 June 2020 and valid at 2330 UTC.
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did not pass over any surface observation sites for which data were available, preventing a full qualitative assess-
ment of the smoke forecasts for this case.

6. Conclusions
Incorporating an AOD assimilation capability into WoFS-Smoke had the desired effect of modifying the analy-
ses smoke aerosol concentrations sometimes leading to improved 0–3 hr forecasts of smoke and incoming solar 
radiation. Comparing the relationship between 2-D AOD and 3-D atmospheric variables indicates that assimi-
lating AOD not only directly affects smoke aerosol concentrations, but also has indirect impacts to temperature, 
humidity, and wind. AOD is positively correlated with smoke and often negatively correlated with temperature. 
Larger AOD sometimes corresponds to an increase in forecast atmospheric moisture, which is a result that will 
be explored further. Additional correlations with wind speed and direction are present especially along the smoke 
plume edges.

The number and characteristics of AOD retrievals change significantly due to changing wildfire conditions. 
These changes result in the optimization of the AOD assimilation also changing as a function of time. The 
optimization is maximized where observed AOD from smoke lies between 0.25 and 1.0. These areas generally 
correspond to the downstream portions of the smoke plumes away from the source fire. Where smoke concentra-
tions are greatest near the wildfire origin, valid AOD retrievals are often not made due to being miss-classified 
as clouds. This can severely limit the impact of AOD assimilation and improved GOES-R AOD retrievals in 
these regions would be greatly beneficial. For low concentrations of smoke aerosols generated by previous fires, 
the difference between retrievals and the model analyses are generally small leading to only minor impacts from 
assimilation in these areas.

For the 13 April 2018 case, assimilating AOD adjusts the smoke plume eastward, partially correcting the west 
bias in the forecast smoke plume when not assimilating AOD data. The positive impact is generally only present 
for the first 90 min of the forecast when verified against both satellite and surface observations. The direct impact 
of the AOD assimilation rather than indirect impacts to other atmospheric variables such as wind appears to 
be the main factor in the observed improvement. However, the magnitude of the improvement is small in some 
circumstances indicating further room for improvement in the system. Assimilating AOD also had a substantial 
impact on smoke forecasts of the 16 June 2020 case. Verification of this case is more difficult given the lack of 
surface observations and potential biases in the AOD retrievals. WAOD also generated 0–3 hr AOD forecasts that 
better matched the retrievals, but there is evidence that the retrievals are negatively biased. Thus, actual smoke 
concentrations may be under-forecast.

Despite the generally positive results, there are many aspects of AOD assimilation into WoFS-Smoke that require 
further research. Future work will utilize a RTM forward operator in place of the more simplistic approach applied 
here. The importance of biases in both retrievals and the model will also be further examined. These biases are 
likely one of the reasons for the less than optimal results seen in portions of these experiments. In addition, future 
experiments will conduct verification with surface air quality measurements, which were not available here.

Finally, future versions of WoFS-Smoke will implement further linkages between aerosol and cloud properties 
(Conrick et al., 2021; Grell et al., 2011), so that assimilating AOD can directly impact analyzed cloud and precip-
itation features.

Data Availability Statement
The WoFS-Smoke output used generated for these and additional experiments are available at https://wof.nssl.
noaa.gov/. The data assimilation code and forecast data used to generate these results are available at https://doi.
org/10.5281/zenodo.7190820 and the NSSL anonymous FTP server at ftp.nssl.noaa.gov/projects/warnonforecast/. 
WoFS model output are generated in netcdf format.
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